

Microfluidics as an Emerging Platform for Tackling AMR

Prof. Xunli Zhang <XL.Zhang@soton.ac.uk> School of Engineering

Global-NAMRIP network conference, Uganda Monday 4th – Thursday 7th March 2019

Southampton

Outline

- Introduction Microfluidics
- Challenges in tackling AMR
- > Our approaches
- > Application examples
- > Summary
- > Acknowledgements

Lab-on-a-Chip & Microfluidics Southampton

Stanford Chip Capillary: 1.5m, 200 × 30 μm Stationary phase: OV-101 Detector: Thermal conductivity

Terry, et al, IEEE Trans. Electron. Devices, ED-26: 1880, 1979

Laminar Flow within Microfluidic Channels

Southampton

On the cover: Seven aqueous streams, each colored with a different dye, converge in a microchannel and proceed in parallel laminar flow, without turbulent mixing. Using laminar flows of reagents is the basis of a technique for fabricating microstructures inside capillaries. The stream presentation was designed with the help of F. Frankel, who also photographed the sample. [© Felice Frankel]

Laminar Flow and Diffusive Southampton Mixing

- Unique characteristics of microfluidics

 $Abs = \varepsilon d C$ $Abs = \log (I_0/I_1)$

Tetrahedron, 58, (24), 4735-4757 (2002)

Applications

Applications

200 μm

Tackling AMR

Southampto

- **Challenges (1)** - in studying pharmacokinetics/AMR
 - Current 2-D cell culture inaccurately reflects conditions in man
 - Current drug testing protocols
 - batch operation
 - static media
 - single concentration

Our approaches

- Using a microsphere-based 3-D cell culture model
- Developing a microfluidic-based platform with precise fluidic control

Microparticles formation by multiphase microfluidics

Microfluidic chips permit the formation of multiphase flows, that are flows constituted of two or more immiscible fluids, suggesting new routes to the production of microparticles.

X-junction chips

U2, P

the

T-junction chips

The breakup process is driven by the build-up of pressure upstream of an emerging droplet

Southam

в

The extracellular matrixSouthamptonregulates the host-pathogenSouthamptoninteractionTesting Tuberculosis (TB) drug resistance

Pyrazinamide kills Mtb in the 3-D model, but not in 7H9 broth or 2-D culture.

Al-Shammari et al., J Inf Dis, 2015, 212:463-473

Bielecka et al., *mBio*, 2017, 8:e02073-16 ¹⁰

Microfluidics to model physiological conditions

Microfluidic-based regulation of physiological conditions (1)

Bielecka et al., *mBio*, 2017, 8:e02073-16

Microfluidic-based regulation of physiological conditions (2)

UNIVERSITY OF

Southamp

Challenges (2)

Southampton

- in rapid detection/diagnosis of AMR

- Rapid and easy to use
- Low cost
- High sensitivity
- High specificity
- Portable
- > Accurate
- > Multiplex

Our approaches

To miniaturise AMR assays into microfluidics devices and provide portable handheld systems for rapid and high throughput AMR testing.

Southampton

Microfluidic-based AMR testing

- Antimicrobial susceptibility testing (AST)
- Minimum inhibitory concentration (MIC) determination

Microfluidic chips

Microfluidic sampling / quantification

W Gray Value Distance (pixels)

Smart phone based quantification

- > Microfluidics as powerful tools for tackling AMR.
- Combining microfluidics and microsphere-based 3-D cell culture model can regulate and detect dynamic microenvironment surrounding cell culture microspheres with precise fluidic control.
- Pump-free microfluidic chips provide essay-to-use and cost-effective approaches for rapid and high throughput AMR testing.

Acknowledgements

- Prof Paul Elkington (Medicine)
- Dr Magda Bielecka (Medicine)
- Dr Liku Tezera (Medicine)
- Dr Robert Zmijan (Engineering)
- Dr Sammer-ul Hassan (Engineering)
- Prof Suwan Jayasinghe (Biomaterials, UCL)
- Network on Antimicrobial Resistance and Infection Prevention (NAMRIP)

Department of BioTechnology, Government of India

सत्यमेव जयते

Engineering and Physical Sciences Research Council

Medical Research Council

